Semigroups whose proper subsemigroups are duo
نویسندگان
چکیده
منابع مشابه
Finite groups all of whose proper centralizers are cyclic
A finite group $G$ is called a $CC$-group ($Gin CC$) if the centralizer of each noncentral element of $G$ is cyclic. In this article we determine all finite $CC$-groups.
متن کاملSubsemigroups of transitive semigroups
Let Γ be a topological semigroup acting on a topological space X, and let Γ0 be a subsemigroup of Γ. We give general conditions ensuring that Γ and Γ0 have the same transitive points.
متن کاملSubsemigroups of Cancellative Amenable Semigroups
We generalize a theorem of Frey by giving sufficient conditions for a subsemigroup T of a cancellative left amenable semigroup S to be left amenable. In particular, we show that if S is left amenable and T does not contain a free subsemigroup on two generators, then T is left amenable as well.
متن کاملGroups whose proper quotients are virtually abelian
The just non-(virtually abelian) groups with non-trivial Fitting subgroup are classified. Particular attention is given to those which are virtually nilpotent and examples are given of the interesting phenomena that can occur.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1984
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1984.101989